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Abstract
Recently an unusual behaviour of the polariton–polariton scattering in a
semiconductor microcavity (MC) under a strong continuous resonant excitation
near the lower polariton branch has been observed (Kulakovskii et al 2001
Nanotechnology 12 475). The maxima of the scattered photoluminescence
signal above the threshold of parametric scattering does not shift along the
microcavity lower polariton branch with change of the pump detuning or
angle of incidence but is always directed approximately perpendicular to
the MC plane. We discuss theoretically a possible explanation of such
behaviour via a competition between two instabilities in the polariton–polariton
scattering, stimulated polariton–polariton scattering and bistability of the
pumped polariton mode response.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the pioneering work by Weisbuch et al [1] a lot of exciting physics has been established
in the system of quasi-two-dimensional (2D) polaritons in a semiconductor microcavity [2].
Recently, a very effective polariton–polariton scattering under the resonant excitation close
to the inflection point of the lower polariton (LP) branch has been observed under pulse [3]
and continuous [4–6] excitation. Giant parametric gains have been found [3] and explained
theoretically [7] as a MC polariton parametric amplifier, with threshold dependence of the
coherent gain due to renormalized (blue-shifted) polariton four-wave mixing. A strong
polarization dependence of the stimulated scattering [8] proves the importance of the bosonic
nature of MC polaritons. A strong redistribution of the polariton parametric luminescence has
been established under continuous excitation near the inflection point [5, 6]. Theoretically, the
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Figure 1. Left panel: a schematic representation of light scattering from a planar semiconductor
microcavity, composed of a λ or (3/2)λ cavity with active quantum wells (QWs), sandwiched
between two distributed Bragg reflectors (DBR). Right panel: a schematic representation of the
polariton–polariton scattering, equations (1), (2), at low pump energies. The thick solid curve is the
LP polariton branch ELP(k). The thin lines are the conjugated idler branches 2Ep − ELP(2kp − k)

at resonant pump energies with increasing energy detuning Ep − ELP(kp) (symbols). It is shown
that the signal (S) and idler (I) have to shift along the LP branch with increase of the detuning.

effect was explained by the renormalization of the LP polariton spectra due to the parametric
coupling [7, 9, 10]. The spectra and occupation number transformations become especially
drastic above the threshold of parametric scattering under cw excitation, when multiply
scattered polariton macro-occupied modes can develop [11]. The effect of polariton parametric
amplification was shown to survive at high temperatures up to 120 K in GaAlAs-based MC
and up to 220 K in CdTe-based microcavities [12].

The polariton–polariton scattering in a microcavity (see a scheme in figure 1) occurs with
energy and lateral momentum conservation and results in two sharp emission peaks on the LP
branch ELP(k), the ‘signal’ at ks and ‘idler’ at ki:

ks + ki = 2kp, (1)

ELP(ks) + ELP(ki) = 2Ep, (2)

where kp and Ep are the pump photon in-plane momentum and energy. The striking
transformations of the polariton parametric luminescence with increase of the intensity of
the resonant cw coherent excitation [4–6, 8, 11] have been investigated experimentally mostly
in the case of specific pump conditions known as magic angle excitation. This is when the
pump momentum is close to the LP branch inflection point, and the scattered polaritons have
ks ≈ 0, ki ≈ 2kp; see figure 1.

What happens if, however, the pump is set away from the magic angle conditions? At
low pump energies, when only one (pumped) polariton mode is macroscopically occupied, the
signal and idler have to shift along the LP dispersion branch with increase of the detuning, as
illustrated by the graphical solutions of equations (1), (2) in figure 1. In a naive understanding,
new macro-occupied modes have to develop above the parametric scattering threshold in the
regions of such signal and idler branch intersections.

However, under stationary excitation conditions, and for high enough pump intensity, the
behaviour of the scattered polaritons appears to be much more complicated than that according
to this simple picture. It has been demonstrated [14] and confirmed very recently [15] that in
the case of stationary excitation, and for high pump energies above the threshold of parametric
scattering, the signal and idler do not shift along the LP dispersion curve with the growth of
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detuning, but peak around ks ≈ 0, ki ≈ 2kp, i.e. as for excitation near the inflection point. In
what follows, we discuss a possible explanation of this unexpected behaviour in the polariton–
polariton scattering [16, 17].

2. The one-dimensional model of polariton–polariton scattering: the parametric
scattering threshold versus the pumped exciton bistability

In order to model the parametric polariton–polariton scattering theoretically, we have solved
numerically [16, 17] a system of coupled equations for EQW, the electric field inside the
microcavity (on the QW), andP(k, t), the averaged exciton polarization over the QW thickness,
given by[

i
d

dt
− EC(k)

]
EQW(k, t) = α(k)Eext(k, t) + β(k)P(k, t), (3)

[
i

d

dt
− EX

]
P(k, t) = AEQW(k, t) + F

∑
q,q ′

P(q, t)P(q ′, t)P∗(q + q ′ − k, t) + ξ(t). (4)

Here Eext = E(t) exp(−iEpt)δ(k − kp) is the electric field of the pump light far from the MC,
which is assumed to be a macro-occupied photonic mode with fixed energy Ep, wavenumber
kp = Ep sin ϑ/c (where ϑ is the angle of pump incidence) and amplitude slowly changing
with time E(t). EC and EX are the resonant frequency of the empty MC and the free
exciton energy in an isolated QW, respectively, F is the exciton–exciton coupling constant,
A is the exciton polarizability, ξ(k, t) is the stochastic Langevin force, 〈ξ(k, t)〉 = 0 and
〈ξ(k, t)ξ(k ′, t ′)〉 = �δ(k − k ′)δ(t − t ′). The MC response constants α and β can be found
through the resonant approximation for the MC scattering matrix at ω = EC(k). The energy
is measured in millielectronvolts, and the units of polarization and electric field are such that
F = 1. In order to simplify the situation, only a one-dimensional (1D) model is considered,
when all scattered polariton momenta are aligned along the direction of intersection between
the pump plane of incidence and the MC plane. Another simplification is omitting the so-called
saturation term [7] (due to the fermion compound nature of the exciton). In the next section we
will discuss the physical consequences of the two-dimensionality of the polariton–polariton
scattering, and accounting for the exciton saturation.

Equation (3) is the Maxwell equation with exciton polarization, written in a resonant scalar
approximation. This means that we neglect the interaction between σ±-polarized polaritons.
Equation (4) is the inhomogeneous nonlinear Schrödinger equation for the exciton polarization
with two sources: coherent external pumping and stochastic Langevin noise. The latter allows
us to model the quantum fluctuations of the scattered signals using quasiclassical equations (3)
and (4).

Numerical solutions of equations (3) and (4) demonstrate a sharp transition from a regular
behaviour at lower pump intensities to a strongly fluctuating behaviour above an abrupt
threshold. Typical solutions are illustrated in figures 2 and 3. In figure 2 the integrated
angular distribution of the scattered light (over the duration of the 1000 ps pump pulse; the
dash–dotted curve in the inset in figure 3) is depicted below (left panel) and above (right panel)
the transition.

The solution below the threshold (left panel in figure 2) coincides with that in [9, 10]—the
signal and idler are peaked around the intersections of the renormalized signal and idler LP
dispersion branches. If the pump detuning is positive (pump energy above the LP branch), the
signal and idler peaks are at ks < 0 (ϑs < 0), ki > 2kp, in agreement with the simple picture
in figure 1, but accounting for the LP branch blue-shift with increase of the pump energy.
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Figure 2. The calculated scattered light intensity distribution below (left panel) and above (right
panel) the threshold. The signal, pump and idler are marked with labels S, P and I, respectively.
Energy detuning is measured from the empty cavity resonance at k = 0 and the exciton energy
in the quantum well is assumed to be 1 meV below. The scattered intensity in both panels is
normalized and shown on a logarithmic greyscale. Note that the range of intensity modulation in
the left panel (below the threshold) is ∼4 orders of magnitude lower than that in the right panel
(above the threshold).
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Figure 3. Exciton polarization versus pump intensity during the excitation pulse. The time delay
between grey, black and triangled dots is 1, 10 and 100 ps, respectively; the triangles are labelled
with the time in picoseconds. The solid S-shaped curve is the solution of equation (7) for a stationary
pump amplitude. The inset shows the time dependences of the input excitation pulse (dash–dotted
line), the calculated exciton polarization (dotted curve) and the QW electric field (solid curve).

Above the threshold a qualitatively different behaviour is seen (right panel in figure 2).
The scattered signal undergoes an abrupt jump from the resonant momentum ks < 0 towards
the normal direction ks ≈ 0 and its intensity in the normal direction becomes significantly
stronger than just before the threshold. Note that the difference in pump intensity between the
right and left panels in figure 2 is only ≈3%. The averaged intensity of the scattered noise
above the transition increases by several orders of magnitude (note the logarithmic greyscale
in figure 2).
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Figure 3 explains the time kinetics of the scattering above the threshold pump intensity.
The shape of the excitation pulse E2

ext (the dash–dotted line in the inset in figure 3) was chosen in
such a way that the threshold intensity is approached slowly during the pulse duration. Actually
two sharp transitions take place (at t ≈ 600 and 700 ps). Both transitions are characterized
by jumps of the driven mode amplitude P0 and the electric field on the quantum well E0; see
the solid and dotted curves, respectively, in figure 3, inset. From the kinetics of the driven
exciton shown by dots in figure 3, it can be easily seen that the first transition at t ≈ 600 ps
is actually not the parametric scattering instability. It is rather the bistability of the driven
nonlinear oscillator response to the external force.

In order to understand the sharp transitions, which are characteristic for the numerical
solutions of equations (3) and (4), we have to investigate the stability of the solutions in the
case of a stationary external field Eext(t) = constant with only one macroscopically filled
mode, i.e., of the form

P(k, t) = P̃(k, t) + δk,kpP0e−iEpt (5)

and

EQW(k, t) = Ẽ(k, t) + δk,kpE0e−iEp t . (6)

Here P̃ and Ẽ are assumed to be small deviations from the solution with one macro-occupied
mode, |P̃/P0|, |Ẽ/E0| � 1. Such a stability analysis corresponds well to our physical situation
when the initial populations of all exciton modes are small compared to that of the pumped
mode.

In zero order over P̃ and Ẽ we get the following cubic equation for the amplitude of the
driven mode P0:

(
PC
PX − Aβ)P0 − 
PC F |P0|2P0 = AαEext, (7)

where 
PC = Ep − EC(kp), 
PX = Ep − EX(kp).
The calculated solution of equation (7) (with the same input parameters as in figure 2)

is an S-shaped curve shown as a solid curve in figure 3 and, additionally, in figure 4. The
S-shape is usual in the theory of nonlinear cavities (see, e.g., [18–20]). Actually, this fact is
well known in the theory of nonlinear driven oscillators since at least the pioneering work of
Duffing [21] (see, e.g., reviews [22, 23]); it brings a bistability into the behaviour of the MC
polaritons. The influence of the bistability was not analysed in the existing theories of the MC
polariton scattering [7, 9–11, 13]. Only recently has the bistability been found experimentally
in MC polaritons, under resonant excitation into the bottom of the LP branch [24].

It can be easily seen that the first instability of the polariton scattering at t ≈ 600 ps is
actually the jump of the driven nonlinear oscillator from the lower S-curve branch (becoming
unstable with increase of the external pump) to the upper S-curve branch. In the empty cavity
with quadratic dispersion, the upper S′-curve branch is usually stable [18, 19]. However, in the
case of polariton–polariton scattering in a MC we see that this branch may become unstable
too (see a transition at t ≈ 700 ps in figure 3).

In order to understand the physical reason for that, we have to analyse the
stability conditions, linearizing equations (3) and (4) over small deviations, and solve
the linear eigenproblem for parametrically coupled deviation amplitudes of the signal
Ẽ(k, t) = Ẽ(k) exp(−iωt), P̃(k, t) = P̃(k) exp(−iωt) and idler Ẽ∗(k̄, t) exp(−2iEpt) =
¯̃E(k̄) exp(−iωt), P̃∗(k̄, t) exp(−2iEpt) = ¯̃P(k̄) exp(−iωt) (where k̄ = 2kp − k):

ω




Ẽ(k)

P̃(k)
¯̃E(k̄)

¯̃P (

k̄)


 = Ĥeff




Ẽ(k)

P̃(k)
¯̃E(k̄)
¯̃P(k̄)


 . (8)
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are shown in figures 7(a), (b) and 8(a), (b). Stars mark the pumped exciton states on the upper stable
S-curve branches; the respective renormalized spectra are shown in figures 6, 7(c), (d), and 8(c), (d).

Here the effective energy matrix Ĥeff is


EC(k) β 0 0
A EX + 2F |P0|2 0 FP2

0
0 0 2Ep − E∗

C(k̄) −β∗
0 −(FP2

0 )∗ −A∗ 2Ep − (EX + 2F |P0|2)∗


 . (9)

The eigenenergies �(k) of the linear problem (equation (8)) characterize the stability of
the solution with only one macro-occupied mode. If the sign of the imaginary parts
of the eigenenergies �(k) is negative, the solution of equations (5) and (6) with one
macro-occupied mode is stable, because the deviations decay exponentially with time,
∝exp(Im �(k)t), Im �(k) < 0. In the opposite case Im �(k) > 0, the one-mode solution
becomes unstable.

Figure 5 shows the renormalized eigenenergies of the linear problem (8) calculated with
|P0|2 = 0.14, |Eext|2 = 0.081, a threshold value for the stimulated scattering into ks < 0,
ki > 2kp. The latter can be understood from the fact that the imaginary part of the eigenenergies
(right panel) becomes positive around ks < 0, ki > 2kp. (There are four eigenenergies
of equation (8), but only the pair of them with Re �(k) near the LP branch are physically
important and shown in figure 5.)
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pumped exciton polarization |P0|2 = 0.44, |Eext |2 = 0.083. These pump conditions (see the star
on the solid curve in figure 4) are realized on the upper S-curve branch after the pumped mode
jumps up from the end of the lower stable S-curve branch.

However, at t ≈ 600 ps, instead of the stimulated scattering into these modes, another
instability develops. The trajectory of the system on the

[|P(kp, t)|2, |Eext(t)|2
]

plane—see
figure 3—shows that the instability at t ≈ 600 ps is the jump of the kp mode from the lower to
the upper branch of the S-shaped curve. Actually, the fact that this instability is approaching
can be seen clearly from the existence of the middle maximum (marked by the letter P) in
the right panel of figure 5. This maximum grows quickly with |P0|2, changing sign (losing
stability) at |P0|2 = 0.16; compare with figure 7.

In the empty cavity with quadratic dispersion, the upper S′ branch is usually stable [18, 19].
In a MC with inflective LP dispersion, it can become unstable against the parametric scattering.
Actually, its stability depends now on the pump position. For the pump in the normal direction,
kp = 0, i.e., far from the inflection point, it is still stable. As a result, a usual bistability
behaviour takes place as demonstrated recently in [24]. In our case, however, the pump is not
far from the inflection point, and it brings about a qualitative difference. This can be seen
from, e.g., figure 6, showing the signal and idler branches calculated on the upper part of the
S-curve at |P0|2 = 0.44, |Eext|2 = 0.083. According to the kinetics of the pumped oscillator
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(a) (b)

(c) (d)

Figure 7. The calculated 2D renormalized signal and idler branches in the case of neglecting
saturation, Vsat = 0. Panels (a), (b) show the situation at the end point of the lower branch of the
S-curve (|P0|2 = 0.16, E2

ext = 0.083), on the right border of the bistability region (see the triangle
on the solid S-shaped curve in figure 4). Panels (c), (d) show the situation on the upper branch
of the S-shaped curve at |P0|2 = 0.44, E2

ext = 0.083 (see the star on the solid S-shaped curve in
figure 4). Panels (a), (c) show the functions Re �(k) for both the idler and signal branches. Panels
(b), (d) show Im �(k) for the most unstable branches only. Thick solid contours in panels (b), (d)
show the stability borders Im �(k) = 0.

in our numerical simulations—see figure 3—it is approximately the place where the pumped
oscillator jumps up during the first instability at t ≈ 600 ps. Instead of damping, a large gain is
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realized for polariton modes just with ks ≈ 0, ki ≈ 2kp. As a result, a stimulated scattering into
these modes develops very quickly (because of a very strong gain). It is fed by the increased
pump absorption, as can be understood from the calculation of the MC absorption kinetics.

As a result of developing this instability, the pumped mode eventually jumps back into the
lower position (at t ≈ 700 ps). Now, because we already have a well developed scattered noise
in the system, this lower position is more or less stable, although subject to noisy fluctuations
because of the already developed scattered states and the competition between them and the
pumped mode.

Equation (8) appears to be analogous to that discussed in detail in [9–11]. We use the MC-X
basis instead of the UP–LP one. There is an advantage of the MC-X basis: the dependence of the
interaction constant F on k can be neglected. Then, in the space representation, it corresponds
to a local contact interaction F

∫ |P(x)|4 dx , which allows a very efficient numerical code for
equations (3) and (4) to be written.

3. Discussion

As we have shown, the numerical solution of equations (3) and (4) in the one-dimensional
approximation and neglecting the exciton saturation can demonstrate sharp thresholds. The
analysis of the stability conditions of the solution with only one macro-occupied mode shows
that these instabilities are caused by the interplay between the bistable driven nonlinear exciton
response and the instabilities due to polariton–polariton parametric scattering.

A question arises of whether these results hold in a full 2D situation, and with accounting
for the exciton saturation.

In our 1D numerical calculations, we discretize the continuum of the exciton and photon
states into approximately 102 coupled modes. From the numerical point of view, solving of the
analogous problem in a full two-dimensional situation can only be done on a supercomputer,
because at least 104 coupled modes are needed. We would like to stress here that we solve
the full problem of multi-polariton scattering, without a priori assumptions on the existence
of three occupied modes (as in [7, 9, 10]) or 6–7 occupied modes [11]. It appears that all
the scattered exciton and photon states are important for the development of the instabilities
discussed.

Let us note firstly that the equation for driven exciton polarization (7) is dimensionality
independent. Thus, the S-curve for the driven nonlinear exciton in 2D is actually the same as
shown in figure 4. As to the stability equations (8), they are written in a simple analytical form
which is valid in the full 2D case too. It is possible to make a full two-dimensional analysis
of the stability of the solution with only one macro-occupied mode. Figure 7 illustrates the
calculated 2D signal and idler dispersion branches (panels (a), (c)) and damping of the most
unstable branch (panels (b), (d)). Panels (a), (b) and (c), (d) illustrate the renormalized spectra
calculated for lower and upper positions on the S-curve respectively. (See the triangle and star,
respectively, on the solid curve in figure 4, and compare with the 1D spectra in figures 5 and 6,
respectively.)

At the lower S-curve branch, slightly below the instability of the pumped oscillator, the
parametric scattering instability is already reached—note a thick 8-shaped contour showing
the parametric scattering instability borders Im �(k) = 0. At slightly lower pump intensities
at the threshold of parametric instability, it transforms into the 8-shaped curve in figure 2 of [9].

As in the 1D case, the solution on the upper branch of the S-curve appears to have a very
large gain (strong parametric instability); compare the right panel in figure 6 and panel (d)
in figure 7. The regions of strong parametric instabilities can be seen inside the thick round
curves on the surfaces Im �(k), showing the condition Im �(k) = 0. The important thing is
that the regions of strong parametric instabilities are compact and centred around ks ≈ 0 and
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ki ≈ 2kp in the 2D as well as in the 1D case. (It is understood that in the 2D case kp,x = kp and
kp,y = 0, as shown in the light scattering scheme in figure 1.) Thus, in the 2D case also, the
jump of the pumped mode from the lower to the upper S-curve branch will be accompanied
by a fast development of the parametric scattering instabilities into the modes with ks ≈ 0,
ki ≈ 2kp. This proves the relevance of the scenario discussed for the full 2D case.

We turn now to the influence of the exciton saturation. Strictly speaking, we have to solve
the equation for the electron–hole density matrix, coupling the electron–hole populations
(diagonal components of the density matrix) with the exciton polarization (off-diagonal). A
simplified macroscopic description of the saturation effect can be used, following the approach
of [25], when a nonlinear term proportional to |P(x)|2E(x) is added to equation (3) for the
polariton polarization. It reads now as[

i
d

dt
− EX

]
P(k, t) = A

∑
q,q ′

[
δq,k − VsatP(q ′, t)P∗(q + q ′ − k, t)

] EQW(q, t)

+ F
∑
q,q ′

P(q ′, t)P∗(q + q ′ − k, t)P(q, t) + ξ(t), (10)

where Vsat is the exciton saturation constant [7, 24]. In the case of GaAlAs microcavities,
the dimensionless saturation parameter Vsat is actually small, ≈0.1.2 This corresponds to the
well established fact that such microcavities are ideal systems for investigation of complicated
exciton–photon nonlinearities below the exciton saturation.

Equation (7) for the pumped mode itself is modified to

(
PC
PX − Ãβ)P0 − 
0 F |P0|2P0 = ÃαEext, (11)

that is, via a replacement of A in equation (7) by Ã = A
(
1 − Vsat|P0|2

)
. The S-shaped curve

calculated with Vsat = 0.1 is shown as a dashed line in figure 4.
The effective Hamiltonian matrix equation (9) becomes


EM(k) β 0 0

Ã EX + 2F|P0|2 − AVsatP∗
0E0 0 FP2

0 − AVsatP0E0

0 0 2Ep − E∗
M(k̄) −β∗

0 −(FP2
0 − AVsatP0E0)

∗ −Ã∗ 2Ep − (EX + 2F|P0|2 − AVsatP∗
0E0)

∗


 .

Although, quantitatively, the accounting for the finite exciton saturation Vsat = 0.1 causes
changes of all calculated dependences, especially that of the S-curve for the pumped mode
(compare the solid and dashed S-curves in figure 4), it does not bring about qualitative
differences in the scenario discussed above of the instability development. The latter can
be seen, e.g., from the comparison of the calculated renormalized branches with Vsat = 0 and
0.1, shown in figure 8 for the most unstable signal–idler branch only. It can be seen from this
comparison that only minor quantitative differences exist between the eigenenergies calculated
at the specific points on the S-curves where the sharp transitions of the polariton scattering
occur, according to the numerical model. This means that there is a qualitative similarity of the
instability developments obtained when we neglect and take into account the saturation effect.

4. Conclusions

To summarize, we have demonstrated numerically on a simplified one-dimensional model a
strong instability of the polariton–polariton scattering. This instability is a complex interplay
between the bistability of the driven nonlinear oscillator and the parametric instabilities of the
polariton–polariton scattering. As a result of this instability, the scattered polariton signal is

2 But not as small as 10−2 in [24].
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(a)

(b)

(c)

(d)

Figure 8. The calculated real ((a), (c)) and imaginary ((b), (d)) parts of the difference between the
2D renormalized signal and idler branches neglecting and accounting for the exciton saturation.
Panels (a), (b) and (c), (d) show the differences in the end points of the lower branch of the S-curve
and on the right border of the bistability region, respectively. In panels (a), (b) the renormalized
spectra are calculated with pumped exciton polarization and external field intensity |P0|2 = 0.16,
E2

ext = 0.083 (for Vsat = 0) and 0.14, 0.072 (for Vsat = 0.1), and in panels (c), (d) they are 0.44,
0.083 (for Vsat = 0) and 0.38, 0.072 (for Vsat = 0.1); see the triangles and stars on the solid
and dashed S-shaped curves in figure 4. Note the much smaller scale of the vertical axes here in
comparison with figure 7.

expected to centre around the normal direction ks ≈ 0. This is in qualitative agreement with
the unexpected behaviour of the polariton–polariton scattering under a strong cw excitation
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away from the inflection point on the lower polariton branch observed recently [14, 15], when
the signal and idler maxima do not shift along the renormalized LP dispersion curve but are
always seen at ks ≈ 0 and ki ≈ 2kp.

We show that accounting for the two-dimensionality of the polariton–polariton scattering
in real MCs as well as of the exciton saturation does not qualitatively change the scenario of
instability development discussed.

Finally, we would like to emphasize that the crucial property for the observation of this
effect is the inflective form of the LP dispersion in microcavities. Additionally, the pump
momentum has to be not too far from the inflection point. In an empty MC, or in a polaritonic
MC with the pump near the normal direction, only the bistability effects can be observed.
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